Unit 2B

Derivatives Part 2

Lesson 3: Finding Tangent Lines Along Curves


Skill Builder

Slope and Parallel Lines

Parallel lines have a constant separation and never intersect.




The slope of a line gives it ‘direction’, so it makes sense that lines with the same slope point in the same direction.

Parallel lines have the same slope, but different intercepts.



The slopes of vertical lines are not defined, so they are a special case of parallel lines. Vertical lines are parallel to each other.

 
Determine an equation for a line that is parallel to «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»y«/mi»«mo»=«/mo»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»9«/mn»«/mrow»«/mstyle»«/math» and passes through the point «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfenced»«mrow»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/mstyle»«/math».

The slope of the original line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math», so the parallel line must also have a slope of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math». Knowing both the slope and a point on the line is enough information to write an equation for the new line, using the slope-point form.

«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»y«/mi»«mo»-«/mo»«msub»«mi»y«/mi»«mn»1«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mi»m«/mi»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«msub»«mi»x«/mi»«mn»1«/mn»«/msub»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»-«/mo»«mfenced»«mrow»«mo»-«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«mtr»«mtd»«mi»y«/mi»«mo»+«/mo»«mn»6«/mn»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/mtd»«/mtr»«/mtable»«/mstyle»«/math»

Slope and Perpendicular Lines

Perpendicular lines meet at right angles.



Recall that the reciprocal of a number can be found by swapping the numerator and denominator. A number that isn’t expressed as a fraction has a denominator of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math».

For example, the number «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» can also be expressed as «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»2«/mn»«mn»1«/mn»«/mfrac»«/mstyle»«/math». Therefore, the reciprocal of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mstyle»«/math» and the negative reciprocal of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math» is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mrow»«/mstyle»«/math».


For the line «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«mrow»«mi»y«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mo»=«/mo»«mo»-«/mo»«mfrac»«mn»3«/mn»«mn»4«/mn»«/mfrac»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»5«/mn»«/mrow»«/mfenced»«/mrow»«/mstyle»«/math», determine the slope of a line

a.
parallel to the given line.

b.
perpendicular to the given line.

a.
The slope of a given line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mfrac»«mn»3«/mn»«mn»4«/mn»«/mfrac»«/mrow»«/mstyle»«/math». The slope of the parallel line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mfrac»«mn»3«/mn»«mn»4«/mn»«/mfrac»«/mrow»«/mstyle»«/math».

b.
The slope of the given line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mfrac»«mn»3«/mn»«mn»4«/mn»«/mfrac»«/mrow»«/mstyle»«/math». The negative reciprocal is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mo»-«/mo»«mfenced»«mrow»«mo»-«/mo»«mfrac»«mn»4«/mn»«mn»3«/mn»«/mfrac»«/mrow»«/mfenced»«mo»=«/mo»«mfrac»«mn»4«/mn»«mn»3«/mn»«/mfrac»«/mrow»«/mstyle»«/math», so the slope of the new line is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mfrac»«mn»4«/mn»«mn»3«/mn»«/mfrac»«/mstyle»«/math».

Once you have reviewed this information, please close this page and return to your course.