U6 L4 Solving Exponential Equations Skill Builder
Completion requirements
Unit 6
Exponential and Logarithmic Functions
Lesson 4: Derivatives of Logarithmic Functions
Skill Builder
Solving Exponential Equations
Because logarithms and exponents are related, and exponents can be used to solve logarithmic equations, it follows that logarithms can be used to solve exponential equations.
Solve «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«msup»«mn»6«/mn»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/msup»«mo»=«/mo»«msup»«mn»8«/mn»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math».
If it were possible to obtain a like base in the exponential equation, then the exponents could be compared and then «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» could
be determined.
Because the base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» and base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»8«/mn»«/mstyle»«/math» are not the same and cannot be manipulated to be the same, another method is necessary.
Take the logarithm of base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math» of both sides of the equation.
Note: It does not matter what logarithmic base we take on both sides of the equation because, as long as the same operation is done to both sides of the equation, the equation remains balanced. The common logarithm or base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math» logarithm is selected because the calculator is designed to work in base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math».
Now, use the power law of logarithms to bring the exponents of the arguments down.
Now, distribute through the brackets on both sides.
Then, collect like terms.
Factor «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» out of the terms on the left side.
Then, divide both sides by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»-«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math» to get «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» by itself on the left.
Because the base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»6«/mn»«/mstyle»«/math» and base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»8«/mn»«/mstyle»«/math» are not the same and cannot be manipulated to be the same, another method is necessary.
Take the logarithm of base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math» of both sides of the equation.
Note: It does not matter what logarithmic base we take on both sides of the equation because, as long as the same operation is done to both sides of the equation, the equation remains balanced. The common logarithm or base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math» logarithm is selected because the calculator is designed to work in base «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»10«/mn»«/mstyle»«/math».
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»log«/mi»«msup»«mn»6«/mn»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/msup»«mo»=«/mo»«mi»log«/mi»«msup»«mn»8«/mn»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/msup»«/mrow»«/mstyle»«/math»
Now, use the power law of logarithms to bring the exponents of the arguments down.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mfenced»«mrow»«mn»3«/mn»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mi»log«/mi»«mn»6«/mn»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math»
Now, distribute through the brackets on both sides.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»x«/mi»«mi»log«/mi»«mn»6«/mn»«mo»+«/mo»«mi»log«/mi»«mn»6«/mn»«mo»=«/mo»«mi»x«/mi»«mi»log«/mi»«mn»8«/mn»«mo»+«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math»
Then, collect like terms.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»x«/mi»«mi»log«/mi»«mn»6«/mn»«mo»-«/mo»«mi»x«/mi»«mi»log«/mi»«mn»8«/mn»«mo»=«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»-«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«/mstyle»«/math»
Factor «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» out of the terms on the left side.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mfenced»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»-«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mfenced»«mo»=«/mo»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»-«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«/mstyle»«/math»
Then, divide both sides by «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»-«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mstyle»«/math» to get «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» by itself on the left.
«math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»x«/mi»«mo»=«/mo»«mfrac»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»8«/mn»«mo»-«/mo»«mi»log«/mi»«mn»6«/mn»«/mrow»«mrow»«mn»3«/mn»«mi»log«/mi»«mn»6«/mn»«mo»-«/mo»«mi»log«/mi»«mn»8«/mn»«/mrow»«/mfrac»«/mrow»«/mstyle»«/math»