Unit 7A

Integrals Part 1

Lesson 3: Areas Part 1


Skill Builder

Summation Notation

A series is the sum of the terms in a sequence. If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«/math» is the general term of a sequence, the sum of the first «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»n«/mi»«/math» terms of that sequence is given by the series «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»S«/mi»«mi»n«/mi»«/msub»«/math».

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left center left¨»«mtr»«mtd»«msub»«mi»S«/mi»«mn»1«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»t«/mi»«mn»1«/mn»«/msub»«/mtd»«/mtr»«mtr»«mtd»«msub»«mi»S«/mi»«mn»2«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»t«/mi»«mn»1«/mn»«/msub»«mo»+«/mo»«msub»«mi»t«/mi»«mn»2«/mn»«/msub»«/mtd»«/mtr»«mtr»«mtd»«msub»«mi»S«/mi»«mn»3«/mn»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»t«/mi»«mn»1«/mn»«/msub»«mo»+«/mo»«msub»«mi»t«/mi»«mn»2«/mn»«/msub»«mo»+«/mo»«msub»«mi»t«/mi»«mn»3«/mn»«/msub»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨».«/mi»«/mtd»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨».«/mi»«/mtd»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨».«/mi»«/mtd»«mtd/»«mtd/»«/mtr»«mtr»«mtd»«msub»«mi»S«/mi»«mi»n«/mi»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msub»«mi»t«/mi»«mn»1«/mn»«/msub»«mo»+«/mo»«msub»«mi»t«/mi»«mn»2«/mn»«/msub»«mo»+«/mo»«msub»«mi»t«/mi»«mn»3«/mn»«/msub»«mi»...«/mi»«msub»«mi»t«/mi»«mi»n«/mi»«/msub»«/mtd»«/mtr»«/mtable»«/math»

The Greek letter «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8721;«/mo»«mspace/»«/math» (sigma) stands for sum. Sigma notation (also called summation notation) is often used to abbreviate the writing of a series. For example, the series formed by adding up the first «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»4«/mn»«/math» terms of the sequence defined by «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»t«/mi»«mi»i«/mi»«/msub»«mo»=«/mo»«mn»3«/mn»«mi»i«/mi»«/math» is written as follows.
 
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«mn»4«/mn»«/munderover»«mn»3«/mn»«mi»i«/mi»«/math»

The values of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»i«/mi»«/math», from «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»i«/mi»«mo»=«/mo»«mn»1«/mn»«/math» to «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»i«/mi»«mo»=«/mo»«mn»4«/mn»«/math», are substituted into the general term of the sequence «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»t«/mi»«mi»i«/mi»«/msub»«mo»=«/mo»«mn»3«/mn»«mi»i«/mi»«/math» to find the sum of the series.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mn»1«/mn»«/mrow»«mn»4«/mn»«/munderover»«mn»3«/mn»«mi»i«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«mfenced»«mn mathcolor=¨#FF0000¨»1«/mn»«/mfenced»«mo»+«/mo»«mn»3«/mn»«mfenced»«mn mathcolor=¨#FF0000¨»2«/mn»«/mfenced»«mo»+«/mo»«mn»3«/mn»«mfenced»«mn mathcolor=¨#FF0000¨»3«/mn»«/mfenced»«mo»+«/mo»«mn»3«/mn»«mfenced»«mn mathcolor=¨#FF0000¨»4«/mn»«/mfenced»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»3«/mn»«mo»+«/mo»«mn»6«/mn»«mo»+«/mo»«mn»9«/mn»«mo»+«/mo»«mn»12«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»30«/mn»«/mtd»«/mtr»«/mtable»«/math»

The variable «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»i«/mi»«/math» is called the index of summation. The number below «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8721;«/mo»«mspace/»«/math» is the lower limit of summation and the number above «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#8721;«/mo»«mspace/»«/math» is the upper limitof summation. The number of terms in a series expressed in summation notation is found as follows.

upper limit of summation – lower number of summation «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»+«/mo»«mn»1«/mn»«/math»

For the example above, the number of terms is as follows.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»number«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»of«/mi»«mi mathvariant=¨normal¨» «/mi»«mi»terms«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«mo»§#8722;«/mo»«mn»1«/mn»«mo»+«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»4«/mn»«/mtd»«/mtr»«/mtable»«/math»

In the expanded form of the series above, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»4«/mn»«/math» terms were added together to find the sum.

Find the sum of the first «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»20«/mn»«/math» natural numbers.

The sum of the first «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»20«/mn»«/math» natural numbers can be found by adding the following series.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»1«/mn»«mo»+«/mo»«mn»2«/mn»«mo»+«/mo»«mn»3«/mn»«mo»+«/mo»«mi»...«/mi»«mn»20«/mn»«/math»
    
Adding the «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»20«/mn»«/math» terms takes some time!

Using summation notation to find the sum of the first «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»20«/mn»«/math» natural numbers is much more efficient since formulas for common sums have already been developed. Use the formula «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mi»i«/mi»«/mrow»«mi»n«/mi»«/munderover»«mi»i«/mi»«mo»=«/mo»«mfrac»«mrow»«mi»n«/mi»«mfenced»«mrow»«mi»n«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mn»2«/mn»«/mfrac»«/math», where «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»i«/mi»«mo»=«/mo»«mn»1«/mn»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»n«/mi»«mo»=«/mo»«mn»20«/mn»«/math». The notation «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mi»i«/mi»«/mrow»«mi»n«/mi»«/munderover»«mi»i«/mi»«mo»=«/mo»«mfrac»«mrow»«mi»n«/mi»«mfenced»«mrow»«mi»n«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mn»2«/mn»«/mfrac»«/math» says the sum of the natural numbers from «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»1«/mn»«/math» to «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»n«/mi»«/math» can be found by evaluating «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»n«/mi»«mfenced»«mrow»«mi»n«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mn»2«/mn»«/mfrac»«/math».

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mi»i«/mi»«/mrow»«mi»n«/mi»«/munderover»«mi»i«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mi»n«/mi»«mfenced»«mrow»«mi»n«/mi»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«munderover»«mo»§#8721;«/mo»«mrow»«mi»i«/mi»«mo»=«/mo»«mi»i«/mi»«/mrow»«mn»20«/mn»«/munderover»«mi»i«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mfrac»«mrow»«mn»20«/mn»«mfenced»«mrow»«mn»20«/mn»«mo»+«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mrow»«mn»2«/mn»«/mfrac»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»210«/mn»«/mtd»«/mtr»«/mtable»«/math»

Once you have reviewed this information, please close this page and return to your course.