U7A L4 Polynomial Functions Skill Builder
Completion requirements
Unit 7A
Integrals Part 1
Lesson 4: Areas Part 2
Skill Builder
Polynomial Functions
Considering the end behaviour of a graph is a good way to help picture a function’s graph.Determining what the left endpoint of a graph is doing, or where it is extending, and then doing the same for the right endpoint of a graph will help you visualize the graph of a function.
Two things to consider when thinking about a graph’s end behaviour are the degree of the polynomial and the sign of the leading coefficient.
As seen in the chart below, the degree of a function determines the general shape of the function’s graph.
The sign of the leading coefficient will help you determine the end behaviour of the function.
Then, by determining specific points, such as the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts and the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercepts, more details about the shape of the graph are revealed.
Polynomial Functions and their Graphs | |
Constant function: «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mn»3«/mn»«/mrow»«/mstyle»«/math» It does not matter what value of «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math» is considered, the value of the function is always «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math». The graph of a constant function is a horizontal line. The «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept is the constant value. The degree of a constant function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»0«/mn»«/mstyle»«/math». |
![]() |
Linear function: The word linear means straight line. Linear functions can be written in slope «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept form, where «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»m«/mi»«mo»=«/mo»«/mrow»«/mstyle»«/math»slope and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»b«/mi»«mo»=«/mo»«/mstyle»«/math» «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»y«/mi»«/mstyle»«/math»-intercept. The graph is a diagonal line with one «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercept. The degree of a linear function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»1«/mn»«/mstyle»«/math». |
![]() |
Quadratic function:
The shape of a quadratic function is a parabola. The graph can intersect the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at two distinct points, just touch at one point, or not intersect the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at all. The degree of a quadratic function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»2«/mn»«/mstyle»«/math». |
![]() |
Cubic function: The graph of a cubic function can intersect the «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-axis at one point, two points, or three points. The degree of a cubic function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»3«/mn»«/mstyle»«/math». |
![]() |
Quartic function:
The graph of a quartic function can have between zero and four «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercepts. The degree of a quartic function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»4«/mn»«/mstyle»«/math». |
![]() |
Quintic function: The quintic graph must have a least one «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»x«/mi»«/mstyle»«/math»-intercept and at most five. The degree of the quintic function is «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mn»5«/mn»«/mstyle»«/math». |
![]() |
Note: The letters «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mrow»«mi»a«/mi»«mo»,«/mo»«mo»§#160;«/mo»«mi»b«/mi»«mo»,«/mo»«mo»§#160;«/mo»«mi»c«/mi»«mo»,«/mo»«mo»§#160;«/mo»«mi»d«/mi»«mo»,«/mo»«mo»§#160;«/mo»«mi»e«/mi»«mo»,«/mo»«/mrow»«/mstyle»«/math» and «math style=¨font-family:Verdana¨ xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mstyle mathsize=¨14px¨»«mi»g«/mi»«/mstyle»«/math» represent real number numerical coefficients. |
The Factor Theorem
The factor theorem is useful for determining whether a binomial is a factor of a polynomial.The factor theorem states that «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mi»a«/mi»«/mrow»«/mfenced»«/math» is a factor of a polynomial, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», if and only if «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»a«/mi»«/mfenced»«mo»=«/mo»«mn»0«/mn»«/math».
In other words, if «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» is substituted for the variable in a polynomial function, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math», and the result is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»0«/mn»«/math», then «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mi»a«/mi»«/math» is a factor of the polynomial «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Simply put, the factor theorem is a special case of the remainder theorem, for which the remainder is always «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»0«/mn»«/math».
Possible Integral Zeros
When factoring a polynomial, instead of randomly choosing a value for «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» that might work, narrow the selection process by considering only a specific list of possible integers that, when substituted into the polynomial function, could result in a function value of zero. To do this, use the integral zero theorem, which states that if «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mi»a«/mi»«/math» is a factor of a polynomial function with integral coefficients, then «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» is a factor of the constant term.
Consider the function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math».
Determine all binomial factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Determine all binomial factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Select a possible value of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«/math» for which «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»a«/mi»«/mfenced»«mo»=«/mo»«mn»0«/mn»«/math».
Focus on the constant term of the polynomial. In this case, the constant term is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»+«/mo»«mn»6«/mn»«/math».
List all the integers that are factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»+«/mo»«mn»6«/mn»«/math».
The possible integral zeros of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math» are «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»3«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»6«/mn»«/math» which are far less daunting than ALL integers.
Try «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/math».
Because «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mn»1«/mn»«/mfenced»«mo»=«/mo»«mn»0«/mn»«/math», the binomial «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/math» is a factor of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Now, use long division or synthetic division to determine the other factor, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Therefore, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«mo»-«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/math» are factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
We were asked to factor «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» to binomials. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» is a trinomial, so try to factor it further.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math»
Focus on the constant term of the polynomial. In this case, the constant term is «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»+«/mo»«mn»6«/mn»«/math».
List all the integers that are factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»+«/mo»«mn»6«/mn»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»3«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»6«/mn»«/math»
The possible integral zeros of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math» are «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»3«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»6«/mn»«/math» which are far less daunting than ALL integers.
Try «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨right center left¨»«mtr»«mtd»«mi»P«/mi»«mfenced»«mn»1«/mn»«/mfenced»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«msup»«mn»1«/mn»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mfenced»«mn»1«/mn»«/mfenced»«mo»+«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»1«/mn»«mo»-«/mo»«mn»7«/mn»«mo»+«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/math»
Because «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mn»1«/mn»«/mfenced»«mo»=«/mo»«mn»0«/mn»«/math», the binomial «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/math» is a factor of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
Now, use long division or synthetic division to determine the other factor, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/mrow»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/mfrac»«mo»=«/mo»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»+«/mo»«mn»0«/mn»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mlongdiv longdivstyle=¨shortstackedrightright¨ charalign=¨center¨ charspacing=¨0px¨ stackalign=¨left¨»«mtable columnalign=¨center center center¨»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»7«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»6«/mn»«/mtd»«/mtr»«/mtable»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«msgroup»«mtable»«mtr»«mtd»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«/mtable»«/mtd»«/mtr»«/mtable»«/msgroup»«/mlongdiv»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«mo»-«/mo»«mn»6«/mn»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mlongdiv longdivstyle=¨shortstackedrightright¨ charalign=¨center¨ charspacing=¨0px¨ stackalign=¨left¨»«mtable columnalign=¨center center center¨»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»7«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»6«/mn»«/mtd»«/mtr»«mtr»«mtd/»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»-«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»6«/mn»«/mtd»«/mtr»«/mtable»«mtable»«mtr»«mtd»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»1«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«/mtd»«mtd»«mo»-«/mo»«mn»6«/mn»«/mtd»«mtd»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«msgroup»«mtable»«mtr»«mtd»«mtable»«mtr»«mtd»«mo»-«/mo»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd»«mn»1«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«/mtable»«/mtd»«/mtr»«/mtable»«/msgroup»«/mlongdiv»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«mo»-«/mo»«mn»6«/mn»«/math»
Therefore, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«mo»-«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/math» are factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math».
We were asked to factor «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» to binomials. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» is a trinomial, so try to factor it further.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi»x«/mi»«mo»-«/mo»«mn»6«/mn»«/mrow»«/mfenced»«/math»,
which we know from synthetic division
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»=«/mo»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«/mrow»«/mfenced»«mfenced»«mrow»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«/mrow»«/mfenced»«/math»,
which we know from factoring the trinomial, «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»Q«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math»
Using Factors to Determine «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨bold-italic¨»x«/mi»«/math»-intercepts
Now, consider the function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«msup»«mi»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi»x«/mi»«mo»+«/mo»«mn»6«/mn»«/math» discussed in the previous example. Because it is a polynomial function of degree «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»3«/mn»«/math», its graph has the potential for three «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math»-intercepts. The fact the function has three unique binomial factors confirms it has three zeros, and the graph of the function has three «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«/math»-intercepts.
The zeros of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»P«/mi»«mfenced»«mi»x«/mi»«/mfenced»«/math» occur at:
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»-«/mo»«mn»1«/mn»«mo»=«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mi»x«/mi»«mo»=«/mo»«mn»1«/mn»«mspace linebreak=¨newline¨/»«mi»x«/mi»«mo»+«/mo»«mn»3«/mn»«mo»=«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mi»x«/mi»«mo»=«/mo»«mo»-«/mo»«mn»3«/mn»«mspace
linebreak=¨newline¨/»«mi»x«/mi»«mo»-«/mo»«mn»2«/mn»«mo»=«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mi»x«/mi»«mo»=«/mo»«mn»2«/mn»«/math»
In the event a polynomial does not have a constant term from which to identify possible integral zeros, consider first factoring the variable from all terms. For example, the function «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mn»5«/mn»«msup»«mi»x«/mi»«mn»4«/mn»«/msup»«mo»+«/mo»«mn»4«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»8«/mn»«mi»x«/mi»«/math» does not have a constant term. However, by factoring as «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»f«/mi»«mfenced»«mi»x«/mi»«/mfenced»«mo»=«/mo»«mi»x«/mi»«mfenced»«mrow»«mn»5«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»4«/mn»«mi»x«/mi»«mo»+«/mo»«mn»8«/mn»«/mrow»«/mfenced»«/math», the constant term of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»8«/mn»«/math» can be used to identify possible integral factors of the resulting trinomial.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#177;«/mo»«mn»1«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»2«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»4«/mn»«mo»,«/mo»«mo»§#160;«/mo»«mo»§#177;«/mo»«mn»8«/mn»«/math»