Compare Your Answers
Completion requirements
\(\_\_\_,15,\_\_\_,\_\_\_,72\)
Equation I
For this question, you can set up a system of linear equations, similar to Example 5.
Equation II
Subtract Equation I from Equation II
Then find \(t_1 \).
\(\begin{align}
15 &= t_1 + d \\
15 &= t_1 + 19 \\
−4 &= t_1 \\
\end{align} \)
To find the two missing terms, add \(19\) to the previous term.
\(\begin{align}
t_3 &= 15 + 19 = 34 \\
t_4 &= 34 + 19 = 53 \\
\end{align} \)
The missing terms are \(−4, 15, 34, 53, 72\).
Alternatively, you can say that the two terms are three steps from each other; therefore, \(3d = (72 − 15) \) or \(3d = 57 \).
For this question, you can set up a system of linear equations, similar to Example 5.
\(
\begin{align}
t_2&= 15 \\
n &= 2 \\
d &= ? \\
t_1 &= ? \\
\end{align} \)
t_2&= 15 \\
n &= 2 \\
d &= ? \\
t_1 &= ? \\
\end{align} \)
\(
\begin{align}
t_n &= t_1 + \left( {n - 1} \right)d \\
15 &= t_1 + \left( {2 - 1} \right)d \\
15 &= t_1 + d \\
\end{align} \)
t_n &= t_1 + \left( {n - 1} \right)d \\
15 &= t_1 + \left( {2 - 1} \right)d \\
15 &= t_1 + d \\
\end{align} \)
Equation II
\(
\begin{align}
t_5 &= 72 \\
n &= 5 \\
d &= ? \\
t_1 &= ? \\
\end{align} \)
t_5 &= 72 \\
n &= 5 \\
d &= ? \\
t_1 &= ? \\
\end{align} \)
\(\begin{align}
t_n &= t_1 + \left( {n - 1} \right)d \\
72 &= t_1 + \left( {5 - 1} \right)d \\
72 &= t_1 + 4d \\
\end{align}\)
t_n &= t_1 + \left( {n - 1} \right)d \\
72 &= t_1 + \left( {5 - 1} \right)d \\
72 &= t_1 + 4d \\
\end{align}\)
Subtract Equation I from Equation II
\[\begin{align}
72 &= \cancel{t_1} + 4d \\
15 &= \cancel{t_1} + d \\
\hline \\
57 &= \qquad 3d \\
19 &= \qquad \enspace d \\
\end{align}\]
72 &= \cancel{t_1} + 4d \\
15 &= \cancel{t_1} + d \\
\hline \\
57 &= \qquad 3d \\
19 &= \qquad \enspace d \\
\end{align}\]
\(\begin{align}
15 &= t_1 + d \\
15 &= t_1 + 19 \\
−4 &= t_1 \\
\end{align} \)
To find the two missing terms, add \(19\) to the previous term.
\(\begin{align}
t_3 &= 15 + 19 = 34 \\
t_4 &= 34 + 19 = 53 \\
\end{align} \)
The missing terms are \(−4, 15, 34, 53, 72\).
Alternatively, you can say that the two terms are three steps from each other; therefore, \(3d = (72 − 15) \) or \(3d = 57 \).