Warm Up: Solving Equations
Completion requirements
Warm Up |
Solving Equations
Solve for \(x\) in the following equations. Check your answers.
-
\(3x + 4 = 16\)
\[\begin{align}
3x + 4 &= 16 \\
3x + 4 - 4 &= 16 - 4 \\
3x &= 12 \\
\frac{{3x}}{3} &= \frac{{12}}{3} \\
x &= 4 \end{align}\]
Check:
\(\begin{align}
3x + 4 &= 16 \\
3\left( 4 \right) + 4 &= 16 \\
12 + 4 &= 16 \\
16 &= 16 \\
\end{align}\)
-
\(5x^2 + 6 = 86\)
Check:\[\begin{align}
5x^2 + 6 &= 86 \\
5x^2 + 6 - 6 &= 86 - 6 \\
5x^2 &= 80 \\
\frac{{5x^2 }}{5} &= \frac{{80}}{5} \\
x^2 &= 16 \\
\sqrt {x^2 } &= \pm \sqrt {16} \\
x &= \pm 4 \\
\end{align}\]
\(x = 4\)
\(\begin{align}
5x^2 + 6 &= 86 \\
5\left( 4 \right)^2 + 6 &= 86 \\
5\left( {16} \right) + 6 &= 86 \\
80 + 6 &= 86 \\
86 &= 86 \end{align}\)\(x = -4\)
\(\begin{align}
5x^2 + 6 &= 86 \\
5\left( {-4} \right)^2 + 6 &= 86 \\
5\left( {16} \right) + 6 &= 86 \\
80 + 6 &= 86 \\
86 &= 86 \end{align}\)