Warm Up


Use the exponent laws to complete the following exercises.

  1. Simplify the following expressions.

    1. \(y^8  \div y^6\)

      \[\begin{align}
       y^8  \div y^6 &= y^{8 - 6}  \\
        &= y^2  \\
       \end{align}\]


    2. \(\frac{{\left( {x^3 } \right)^2 }}{{x^6 }}\)

      \[\begin{align}
       \frac{{\left( {x^3 } \right)^2 }}{{x^6 }} &= \frac{{x^{3\cdot 2} }}{{x^6 }} \\
        &= \frac{{x^6 }}{{x^6 }} \\
        &= x^{6 - 6}  \\
        &= x^0  \\
        &= 1 \\
       \end{align}
      \]


    3. \(\frac{{\left( {mn} \right)^2 }}{{m^3 n}}\)

    4. \[\begin{align}
       \frac{{\left( {mn} \right)^2 }}{{m^3 n}} &= \frac{{m^2 n^2 }}{{m^3 n}} \\
        &= m^{2 - 3} n^{2 - 1}  \\
        &= m^{ - 1} n \\
        &= \frac{n}{m} \\
       \end{align}\]


  2. Rewrite each radical as a power.

    1. \(\sqrt[3]{h^4}\)

      \[\sqrt[3]{{h^4 }} = h^{\frac{4}{3}} \]


    2. \(\sqrt[6]{d^2}\)

      \[\begin{align}
       \sqrt[6]{{d^2 }} &= d^{\frac{2}{6}}  \\
        &= d^{\frac{1}{3}}  \\
       \end{align}\]


  3. Rewrite each power as a radical.

    1. \(t^{\frac{4}{5}} \)

      \[t^{\frac{4}{5}}  = \sqrt[5]{{t^4 }}\]


    2. \(v^{\frac{1}{3}} \)

      \[v^{\frac{1}{3}}  = \sqrt[3]{v}\]

  4. Evaluate the following expressions without using a calculator.  Verify your answers using a calculator.

    1. \(\sqrt[3]{{64^2 }}\)

      \[\begin{align}
       \sqrt[3]{{64^2 }} &= 64^{\frac{2}{3}}  \\
        &= \left( {4^3 } \right)^{\frac{2}{3}}  \\
        &= 4^{3\left( {\frac{2}{3}} \right)}  \\
        &= 4^2  \\
        &= 16 \\
       \end{align}\]



    2. \(\sqrt[5]{{32^4 }}\)

      \[\begin{align}
       \sqrt[5]{{32^4 }} &= 32^{\frac{4}{5}}  \\
        &= \left( {2^5 } \right)^{\frac{4}{5}}  \\
        &= 2^{5\left( {\frac{4}{5}} \right)}  \\
        &= 2^4  \\
        &= 16 \\
       \end{align}\]