Warm Up: Exponent Laws
Completion requirements
Warm Up |
Use the exponent laws to complete the following exercises.
-
Simplify the following expressions.
-
\(y^8 \div y^6\)
\[\begin{align}
y^8 \div y^6 &= y^{8 - 6} \\
&= y^2 \\
\end{align}\]
-
\(\frac{{\left( {x^3 } \right)^2 }}{{x^6 }}\)
\[\begin{align}
\frac{{\left( {x^3 } \right)^2 }}{{x^6 }} &= \frac{{x^{3\cdot 2} }}{{x^6 }} \\
&= \frac{{x^6 }}{{x^6 }} \\
&= x^{6 - 6} \\
&= x^0 \\
&= 1 \\
\end{align}
\]
-
\(\frac{{\left( {mn} \right)^2 }}{{m^3 n}}\)
\[\begin{align}
\frac{{\left( {mn} \right)^2 }}{{m^3 n}} &= \frac{{m^2 n^2 }}{{m^3 n}} \\
&= m^{2 - 3} n^{2 - 1} \\
&= m^{ - 1} n \\
&= \frac{n}{m} \\
\end{align}\] -
\(y^8 \div y^6\)
-
Rewrite each radical as a power.
- \(\sqrt[3]{h^4}\)
\[\sqrt[3]{{h^4 }} = h^{\frac{4}{3}} \] - \(\sqrt[6]{d^2}\)
\[\begin{align}
\sqrt[6]{{d^2 }} &= d^{\frac{2}{6}} \\
&= d^{\frac{1}{3}} \\
\end{align}\]
- \(\sqrt[3]{h^4}\)
-
Rewrite each power as a radical.
- \(t^{\frac{4}{5}} \)
\[t^{\frac{4}{5}} = \sqrt[5]{{t^4 }}\] - \(v^{\frac{1}{3}} \)
\[v^{\frac{1}{3}} = \sqrt[3]{v}\]
- \(t^{\frac{4}{5}} \)
-
Evaluate the following expressions without using a calculator. Verify your answers using a calculator.
- \(\sqrt[3]{{64^2 }}\)
\[\begin{align}
\sqrt[3]{{64^2 }} &= 64^{\frac{2}{3}} \\
&= \left( {4^3 } \right)^{\frac{2}{3}} \\
&= 4^{3\left( {\frac{2}{3}} \right)} \\
&= 4^2 \\
&= 16 \\
\end{align}\] - \(\sqrt[5]{{32^4 }}\)
\[\begin{align}
\sqrt[5]{{32^4 }} &= 32^{\frac{4}{5}} \\
&= \left( {2^5 } \right)^{\frac{4}{5}} \\
&= 2^{5\left( {\frac{4}{5}} \right)} \\
&= 2^4 \\
&= 16 \\
\end{align}\]
- \(\sqrt[3]{{64^2 }}\)