Multimedia


Solve \(2\sqrt {x - 1} = \sqrt x - 1\).  Indicate any restrictions on the variable.


Step 1: Identify all restrictions on the variable.

\(\begin{align}
 x - 1 &\ge 0 \\ 
 x &\ge 1 \\ 
 \end{align}\)
\(x \ge 0 \)

Using a number line, the overall restriction on the variable can be determined.


This indicates that the restriction on the variable is \(x \ge 1, x \in \rm R\).

Step 2: Isolate one of the radical expressions.

In this example, one of the radicals, \(2\sqrt {x - 1}\), is already isolated. You can leave the two with the radical as well.

\(2\sqrt {x - 1} = \sqrt x - 1\)

Step 3: Square both sides of the equation to remove the first radical, then simplify until the second radical is isolated.

\(\begin{align}
 2\sqrt {x - 1} &= \sqrt x - 1 \\ 
 \left( {2\sqrt {x - 1} } \right)^2 &= \left( {\sqrt x - 1} \right)^2  \\ 
 2^2 \cdot \left( {\sqrt {x - 1} } \right)^2 &= \left( {\sqrt x - 1} \right)\left( {\sqrt x - 1} \right) \\ 
 4\left( {x - 1} \right) &= \left( {\sqrt x } \right)^2 - \sqrt x - \sqrt x + 1 \\ 
 4x - 4 &= x - 2\sqrt x + 1 \\  
 3x - 5 &= -2\sqrt x  \\ 
 \end{align}\)


Step 4: Square both sides to remove the second radical, then simplify.

\(\begin{align}
 3x - 5 &= -2\sqrt x  \\ 
 \left( {3x - 5} \right)^2 &= \left( { - 2\sqrt x } \right)^2  \\ 
 9x^2 - 30x + 25 &= 4x \\ 
 9x^2 - 34x + 25 &= 0 \\ 
 \end{align}\)


Step 5
: To solve the resulting quadratic equation, choose one of the methods learned in Unit 2.

Using the quadratic formula:

\(\begin{align}
 x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\ 
 x &= \frac{{34 \pm \sqrt {\left( {-34} \right)^2 - 4\left( 9 \right)\left( {25} \right)} }}{{2\left( 9 \right)}} \\ 
 x &= \frac{{34 \pm \sqrt {1156 - 900} }}{{18}} \\ 
 x &= \frac{{34 \pm \sqrt {256} }}{{18}} \\ 
 x &= \frac{{34 \pm 16}}{{18}} \\ 
 x &= \frac{{34 + 16}}{{18}}{\rm { and }}x = \frac{{34 - 16}}{{18}} \\ 
 x &= \frac{{50}}{{18}}{\rm { and }}x = \frac{{18}}{{18}} \\ 
 x &= \frac{{25}}{9}{\rm { and }}x = 1 \\ 
 \end{align}\)


The solution is within the variable’s restrictions.

Step 6: Verify.

\[x = \frac{25}{9}\]

Left Side
Right Side
\[\begin{array}{r}
 2\sqrt {x - 1}  \\ 
 2\sqrt {\frac{{25}}{9} - 1}  \\ 
 2\sqrt {\frac{{16}}{9}}  \\ 
 2\left( {\frac{4}{3}} \right) \\ 
 \frac{8}{3} \\ 
 \end{array}\]

\[\begin{array}
 \sqrt x - 1 \\ 
 \sqrt {\frac{{25}}{9}} - 1 \\ 
 \frac{5}{3} - 1 \\ 
 \frac{2}{3} \\ 
 \end{array}\]


 LS \(\ne\) RS

This is an extraneous root.
\[x = 1\]


Left Side
Right Side
\(\begin{array}{r}
 2\sqrt {x - 1}  \\ 
 2\sqrt {1 - 1}  \\ 
 2\sqrt 0  \\ 
 2\left( 0 \right) \\ 
 0 \\ 
 \end{array}\)
\(\begin{array}
 \sqrt x - 1 \\ 
 \sqrt 1 - 1 \\ 
 1 - 1 \\ 
 0 \\ 
 \end{array}\)
 LS = RS

The solution is \(x = 1\).