Example 6
Completion requirements
Multimedia |
Solve \(2\sqrt {x - 1} = \sqrt x - 1\). Indicate any restrictions on the variable.
Step 1: Identify all restrictions on the variable.
\(\begin{align}
x - 1 &\ge 0 \\
x &\ge 1 \\
\end{align}\)
x - 1 &\ge 0 \\
x &\ge 1 \\
\end{align}\)
\(x \ge 0 \)
Using a number line, the overall restriction on the variable can be determined.

This indicates that the restriction on the variable is \(x \ge 1, x \in \rm R\).
Step 2: Isolate one of the radical expressions.
In this example, one of the radicals, \(2\sqrt {x - 1}\), is already isolated. You can leave the two with the radical as well.
\(2\sqrt {x - 1} = \sqrt x - 1\)
Step 3: Square both sides of the equation to remove the first radical, then simplify until the second radical is isolated.
\(\begin{align}
2\sqrt {x - 1} &= \sqrt x - 1 \\
\left( {2\sqrt {x - 1} } \right)^2 &= \left( {\sqrt x - 1} \right)^2 \\
2^2 \cdot \left( {\sqrt {x - 1} } \right)^2 &= \left( {\sqrt x - 1} \right)\left( {\sqrt x - 1} \right) \\
4\left( {x - 1} \right) &= \left( {\sqrt x } \right)^2 - \sqrt x - \sqrt x + 1 \\
4x - 4 &= x - 2\sqrt x + 1 \\
3x - 5 &= -2\sqrt x \\
\end{align}\)
Step 4: Square both sides to remove the second radical, then simplify.
\(\begin{align}
3x - 5 &= -2\sqrt x \\
\left( {3x - 5} \right)^2 &= \left( { - 2\sqrt x } \right)^2 \\
9x^2 - 30x + 25 &= 4x \\
9x^2 - 34x + 25 &= 0 \\
\end{align}\)
Step 5: To solve the resulting quadratic equation, choose one of the methods learned in Unit 2.
Using the quadratic formula:
\(\begin{align}
x &= \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}} \\
x &= \frac{{34 \pm \sqrt {\left( {-34} \right)^2 - 4\left( 9 \right)\left( {25} \right)} }}{{2\left( 9 \right)}} \\
x &= \frac{{34 \pm \sqrt {1156 - 900} }}{{18}} \\
x &= \frac{{34 \pm \sqrt {256} }}{{18}} \\
x &= \frac{{34 \pm 16}}{{18}} \\
x &= \frac{{34 + 16}}{{18}}{\rm { and }}x = \frac{{34 - 16}}{{18}} \\
x &= \frac{{50}}{{18}}{\rm { and }}x = \frac{{18}}{{18}} \\
x &= \frac{{25}}{9}{\rm { and }}x = 1 \\
\end{align}\)
The solution is within the variableβs restrictions.
Step 6: Verify.
\[x = \frac{25}{9}\]
Left Side | Right Side |
---|---|
\[\begin{array}{r} 2\sqrt {x - 1} \\ 2\sqrt {\frac{{25}}{9} - 1} \\ 2\sqrt {\frac{{16}}{9}} \\ 2\left( {\frac{4}{3}} \right) \\ \frac{8}{3} \\ \end{array}\] | \[\begin{array} \sqrt x - 1 \\ \sqrt {\frac{{25}}{9}} - 1 \\ \frac{5}{3} - 1 \\ \frac{2}{3} \\ \end{array}\] |
LS \(\ne\) RS |
This is an extraneous root.
\[x = 1\]
Left Side | Right Side |
---|---|
\(\begin{array}{r} 2\sqrt {x - 1} \\ 2\sqrt {1 - 1} \\ 2\sqrt 0 \\ 2\left( 0 \right) \\ 0 \\ \end{array}\) | \(\begin{array} \sqrt x - 1 \\ \sqrt 1 - 1 \\ 1 - 1 \\ 0 \\ \end{array}\) |
LS = RS |
The solution is \(x = 1\).