Investigation

When is a Quadratic Function Positive?


  1. Consider the function \(f(x) = -x^2 + 2x + 5\).

    1. Complete the table below.

      \(x\)  Is \(f(x)\) positive?
      \(-5\)  no
      \(-4\)  
      \(-3\)   
      \(-2\)   
      \(-1\)   
      \(0\)   
      \(1\)   
      \(2\)   
      \(3\)   
      \(4\)  
      \(5\)  

    2. Describe a pattern in the table.


    3. Graph the function. How is the graph related to the pattern in the table?

  2. Consider the function \(f(x) = (x + 2)(x - 3)\).

    1. What \(x\)-values make \(f(x)\) positive? Can this be answered without graphing or using a table of values?


    2. Sketch a number line representing the \(x\)-values that make \(f(x)\) positive.


    3. Sketch the graph of \(y = f(x)\). How is the information in the graph related to the information from parts a and b?